
International Journal of Digital Evidence  Summer 2002, Volume 1, Issue 2 

Error, Uncertainty, and Loss in Digital Evidence 
Eoghan Casey, MA 

 

To be useful, measurements must be reliable. Having incorrect information is 

potentially more damaging than having no information. The situation, of course, 

raises the question of accuracy or uncertainty of a measurement. Arnold O. 

Beckman, founder of Beckman Instruments, has stated, “One thing you learn in 

science is that there is no perfect answer, no perfect measure.”1 (Beckwith, T. G., 

Marangoni, R. D., Lienhard, J. H., 1993)  

                                                

Abstract 

Despite the potentially grave ramifications of relying on faulty information in the 

investigative or probabitive stages, the uncertainty in digital evidence is not being 

evaluated at present, thus making it difficult to assess the reliability of evidence stored on 

and transmitted using computer networks. As scientists, forensic examiners have a 

responsibility to reverse this trend and address formally the uncertainty in any evidence 

they rely on to reach conclusions. This paper discusses inherent uncertainties in network 

related evidence that can be compounded by data corruption, loss, tampering, or errors in 

interpretation and analysis.  Methods of estimating and categorizing uncertainty in digital 

data are introduced and examples are presented. 

 
1 Reliability refers to the consistency of a measuring or recording process. A perfectly reliable process will 
record the same value when repeated measurements of the same entity are taken. Accuracy and error both 
refer to the difference between the true value and measured/recorded value. Uncertainty is the probable 
upper bound of the error. 
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1. Introduction 

When evaluating evidence, its reliability and accuracy are of grave importance both in the 

investigative and probative stages of a case. Whether digital evidence is being used to 

implicate or exonerate a person, how reliably and accurately the data represents actual 

events can impact an individual’s liberty and life. The need for measures of error in 

forensic analysis of computer systems is apparent in the history of scientific evidence 

(Palmer, 2002). Generally accepted guidelines for evaluating scientific evidence include 

quantifying the technique’s potential rate of error (Daubert, 1993) and more rigorous 

requirements are being called for (Pollack, 2002). Therefore, forensic examiners have a 

duty to estimate how closely the measured values represented in their data approximate 

reality. 

 

When criminal activities on a computer network are being reconstructed using digital 

records, every aspect has some degree of error. The origin and time of the events, as well 

as who was responsible for the events can be uncertain. Lost data can give an incomplete 

picture of the crime. It is even possible that an event never occurred but that a digital 

record was fabricated to misdirect investigators or implicate an innocent person. The 

computer system and process that generates records can introduce more subtle errors that 

are only detectable through detailed analysis.  

 

Ideally, we should evaluate computer-generated records based on the reliability of the 

system and process that generated the records. 
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Because records of this type are not the counterpart of a statement by a human 

declarant, which should ideally be tested by cross-examination of that declarant, 

they should not be treated as hearsay, but rather their admissibility should be 

determined on the basis of the reliability and accuracy of the process involved. 

(Strong, J. W., 1992) 

 

However, the reliability of a particular computer system or process can be difficult to 

assess. Programmers are fallible and can unintentionally or purposefully embed errors in 

their applications. Also, complex systems can have unforeseen operating errors, 

occasionally resulting in data corruption or catastrophic crashes. Possibly because of 

these complexities, courts are not closely examining the reliability of computer systems 

or processes and are evaluating the reliability of digital evidence without considering 

error rates or uncertainty. For instance, in a sexual assault case, the court did not examine 

a telephone billing system closely and assumed that its records were reliable and accurate 

because a computer had generated them. 

 

Figlio's testimony was sufficient to confirm the reliability of the telephone 

records. She explained that entries in the record were made instantaneously with 

the making of the calls and that AT&T would send Southwestern Bell the billing 

tapes, which established when the call took place, the originating number and the 

terminating number. She explained that the source of the information was a 

computer, which monitored Southwestern Bell's switching operations. The circuit 

court was correct in concluding that these records were uniquely reliable in that 
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they were computer-generated rather than the result of human entries. (State of 

Missouri v. Dunn, 1999) 

 

Even if it is not possible to exactly quantify the uncertainty in a given piece of digital 

evidence, courts should look to experts for a clear sense of how reliable the data are. All 

digital evidence has some degree of uncertainty and an expert should be capable of 

describing and estimating the level of certainty that can be placed in a given piece of 

evidence. If we do not make an effort to estimate uncertainty in digital evidence, it could 

be argued that there is no basis on which to assess the reliability or accuracy of the 

evidence. Additionally, forensic examiners who do not account for error, uncertainty, and 

loss during their analysis may reach incorrect conclusions in the investigative stage and 

may find it harder to justify their assertions when cross-examined. Furthermore, unless 

courts require some quantification of the uncertainty associated with given digital 

evidence, technical experts are less likely to provide it, and the resulting rulings will be 

weakened accordingly. 

 

This paper explores the inherent uncertainty in evidence collected from computer 

networks and describes some potential sources of error and loss. The aim of this work is 

to provide a basis to help forensic examiners implement the scientific method by 

detecting, quantifying and compensating for errors and loss in evidence collected from 

networked systems. A method for estimating and reporting the level of certainty of digital 

evidence in a standard manner is provided in Table 1 in Subsection 2.3. This paper 

focuses on logs relating to network activities including server logon records, router 
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NetFlow logs, and network capture logs. The general concepts and approaches to 

assessing uncertainty can be generalized to other computer, network and 

telecommunication systems. 

2. Separation: Time, Space and Abstraction 

Digital data are separated by both time and distance from the events they represent. A log 

file that records network activities is an historic record of events that happened at various 

places in the world. Even when viewing network traffic using a sniffer, there is a delay 

between the activity that generated the traffic and the display of the data on the monitor.  

 

Additionally, networks are comprised of layers that perform different functions from 

carrying electronic pulses over network cables to presenting data in a form that computer 

applications can interpret. For instance, the Open System Interconnection (OSI) reference 

model divides networks into seven layers: the application, presentation, session, 

transport, network, data link, and physical layers.2 Each layer of abstraction hides the 

complexity of lower layer and provides a new opportunity for error and loss as is 

discussed throughout this paper. 

 

Each of these dimensions of separation prevents examiners from viewing the true data 

and can distort what the examiner sees. Learning how to quantify and account for the 

resulting uncertainty is a critical aspect of a forensic examiner’s work. 

                                                 
2 For more information about network layers and the digital evidence they contain, see (Casey, 2000) 
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2.1 Temporal Uncertainty 

When investigating a crime, it is almost invariably desirable to know the time and 

sequence of events. Fortunately, in addition to storing, retrieving, manipulating, and 

transmitting data, computers associate date/time stamps with almost every task they 

perform. However, forensic examiners must keep in mind that computer clocks are 

inherently limited, with resolutions in the millisecond or microsecond range and can drift 

over time (Stevens, 1994). Although these time periods may be negligible in some cases, 

there are situations where small discrepancies can be important. For instance, when 

creating a timeline using sniffer logs from several systems that record hundreds of events 

in the same second, minor clock discrepancies can make it difficult to create an accurate 

chronological sequence of actions. Also, small discrepancies can accumulate to create 

larger errors such as clock drift resulting in a large offset. Until errors are actually 

quantified it cannot be stated with certainty that they are negligible. 

 

The most common source of temporal error is system clock offset. If a router’s clock is 

several hours fast, this discrepancy can make it difficult to correlate events with logs 

from other systems and can impair subsequent analysis. Also, errors in an evidence 

collection system's clock can create discrepancies during the analysis and reporting 

stages. For instance, most syslog servers generate a date/time stamp for log entries that 

they receive from remote systems over the network. Thus, a clock offset on the server can 

introduce error even if the clock of the computer that sent the syslog message is correct.  
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Determining whether a system clock was accurate when specific records were generated 

can be a challenging task in a networked environment. The system clock of interest may 

be elsewhere on the network and might be overlooked during the initial search. For 

instance, in a 1995 homicide case the primary suspect claimed that he was at work at the 

time of the murder and his alibi depended largely on the last configuration time of a 

network device – a Shiva Fastpath. The last configuration time of the device supported 

the suspect’s alibi but investigators believed that the evidence had been fabricated several 

days after the crime.  

 

The Fastpath device did not have an internal time-keeping source and relied on an 

external time source – the system time of the remote management console on a 

Macintosh computer. Furthermore, the log showing the last configuration time of the 

Fastpath was only recorded on the management console. Therefore, because the suspect 

had full control over the management console, it was possible for him to reset the time on 

the device from the management console to give the impression that the device was last 

configured at a specific time. In this case, the management console had not been collected 

as evidence during the initial search, making it impossible to determine conclusively if 

the date/time stamps had been fabricated. Because the management console was not 

collected during the initial search and seizure, there was a high degree of uncertainty in 

the date/time stamp, the suspect’s alibi could not be confirmed, and he was convicted of 

the murder. 
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Time zone differences are another common source of temporal error in network logs. 

Some Web servers (e.g., Microsoft IIS) create logs with date/time stamps in GMT and 

computer systems around the world often use local time in their logs. A failure to correct 

for time zone offsets can result in a great deal of confusion. For instance, when 

requesting information from an Internet Service Provider, a time zone discrepancy can 

cause the ISP to provide the wrong subscriber information and thus possibly implicate an 

innocent individual. 

 

Smaller temporal offsets can be introduced by system processing when there is a delay 

between an event and the associated recording of the event. For example, before an entry 

is made in a sniffer log, the associated datagram must travel from the network cable 

through the network interface card and sniffer application before it is stored in a file on 

disk. More sophisticated network traffic monitoring systems such as an IDS can 

introduce further delays because the packet must be compared with a set of signatures 

before a log entry is created (the example in Figure 1 shows a total delay of 17 seconds).  
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Figure 1: Example of distance and lag between network event and corresponding 

IDS log entry 

 

Similarly, the login process on Unix systems performs several steps prior to making an 

entry in the login accounting files (utmp, lastlog, and wtmp). Thus, there may be a small 

disparity between the time of the initial connection to the system as seen in network 

traffic logs and the date/time stamp of the associated login accounting records on the 

system. Although such minor discrepancies may not change conclusions based on the 

evidence, a failure to detect and explain these differences can weaken an argument. 

2.2 Uncertainty of Origin 

Determining the origin of events on a network is an important step towards apprehending 

offenders. However, the distributed and insecure nature of networks can introduce 

significant uncertainty of origin in digital evidence.  

 

One of the most commonly encountered examples of origin uncertainty on networks is 

forged e-mail. Individuals who impersonate others in e-mail, unsolicited bulk e-mailers 

(a.k.a. SPAMers), and malicious programs such as the Klez worm all fabricate e-mail to 

make it more difficult to determine where the message came from. The “From” header in 

an e-mail message is easily falsified and, therefore, has a high degree of uncertainty. 

“Received” headers often contain the originating IP address of an e-mail message along 

with a date/time stamp from the servers that handled the message. “Received” headers are 

more reliable than “From” headers, provided an individual or program did not fabricate 

them at the source. 
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Origin uncertainty is created on the Web when individuals configure their browsers to 

connect via a proxy to conceal their actual IP address. It is also possible to connect to 

IRC, FTP, Telnet servers and other servers via SOCKS proxies and all AOL users are 

connected to the Internet through proxies. Additionally, many computer intruders break 

into systems specifically to install programs (a.k.a. bots) that enable them to connect to 

IRC networks without disclosing their actual location. This allows individuals to trade 

copyright protected media and other illegal materials through the compromised system 

rather than directly from their personal computer.  

 

A network address translation (NAT) device can provide many machines with Internet 

access through a single point of contact. Thus, an event originating from any machine 

behind a NAT device will appear to come from the NAT device’s IP address. From a 

distance, it is not possible to distinguish between machines behind a NAT box. A virtual 

private network (VPN) allows individuals to connect to a network from anywhere in the 

world. Thus, a computer in California can connect to the Internet via a VPN server in 

Connecticut, giving the impression that online activities are originating in Connecticut. 

These possibilities reduce the degree of certainty in a given IP address as the actual origin 

of an event even when multiple, independent sources of evidence corroborate the fact that 

a given IP address was involved.  

 

Being mindful of origination uncertainty can help forensic examiners avoid making 

incorrect conclusions. For instance, in one intrusion investigation that did not take into 
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account origination uncertainty, a warrant was served at a suspected hacker’s home in 

California. All that law enforcement officers found were a compromised home computer 

connected to the Internet via DSL and an innocent, frightened computer owner. 

2.3 Estimating Uncertainty in Network Related Evidence 

In some instances, it may be relatively easy for a forensic examiner to qualify assertions 

with appropriate uncertainty. For instance, when network traffic statistics are only 

available in aggregate form, the examiner may be provided with summarized data about 

connections to/from a suspect’s computer that are totaled every ten minutes. With this 

data, it is not possible to distinguish between a Web site that the suspect accessed for ten 

minutes and a Web site that was only viewed for a few seconds. To ensure that the 

resulting uncertainty is conveyed to others, the examiner's report should indicate that the 

date/time stamps associated with the suspect's network activity are accurate to within 10 

minutes. 

 

Another approach to calculating uncertainty is using probability distribution functions. 

For example, clock offsets of 355 computers on a university network were calculated.3 

Four of the machines’ clocks were more than six years slow and another machine’s clock 

was over one year slow. Factoring these systems into the calculations places the 

uncertainty into years as opposed to hours. Excluding these outliers and plotting a 

histogram of the remaining 350 values shows a dominant central peak with gradual 

decline on both sides (Figure 2) suggesting that this data has a normal distribution 

                                                 
3 These values are not intended to be representative but simply to demonstrate a common approach to 
calculating uncertainty. 
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enabling us to calculate the standard deviation (σ = 6.7 hours).4 Thus, there is a 95% 

probability that time measured by a system clock is within +/- 13.1 hours (1.96σ) of the 

actual time. 
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Figure 2: Histogram of clock offsets showing a Gaussian distribution 

 

Based on these results, a forensic examiner might qualify all assertions by stating that 

date/time stamps from any given system are accurate to +/- 13 hours (with 95% 

confidence). However, this uncertainty was calculated using data that may not be 

representative of computers involved in crime and five inconvenient values were 

                                                 
4 Although excluding these anomalous values simplifies this demonstration, it also weakens the underlying 
assumption that the temporal errors in this experiment have a Gaussian distribution and may invalidate the 
associated uncertainty computation.  
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excluded for convenience, making the results highly suspect. So, although it is relatively 

straightforward to estimate uncertainty in this way, it is not necessarily applicable or 

accurate. 

 

In most cases, quantifying uncertainty in network related evidence is very difficult. The 

state of a network changes constantly, tampering and corruption are unpredictable, and 

quantifying temporal or origination uncertainty of a given log entry may not be possible. 

Consider the following example from a Microsoft IIS Web server access log showing an 

intrusion: 

2002-03-08 04:42:31 10.10.24.93 - 192.168.164.88 80 GET /scripts/..%5c../winnt/system32/cmd.exe /c+tftp+-
i+172.16.19.42+get+su.exe+c:\inetpub\scripts\su.exe 502 

 
 
The date/time stamps of this type of log file are usually in GMT but can be configured to 

use local time. Without additional information, we cannot determine if this event 

occurred on 2002-03-08 at 04:42 GMT or 2002-03-07 at 23:42 EST. Additionally, the 

system clock of the computer could be incorrect by minutes, hours, or days. Of course, 

these potential errors can be avoided by documenting the system clock time and the Web 

server configuration but origination uncertainty can be more problematic. In the above 

example, the attacker could be connecting through a proxy so the IP address 10.10.24.93 

may not be on the same local area network or even in the same geographical region as the 

attacker.  

 

Also note that the Web server request recorded in this log entry was constructed to 

exploit a vulnerability that allows an attacker to execute commands on the server. In this 

case, the attacker is instructing the Web server to fetch a file called su.exe from another 
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system (172.16.19.42). We do not know if the IP address 172.16.19.42 is in the same 

geographical region as the attacker and we do not even know if this command was 

successful.5 Finally, since the intruder could execute commands on the Web server, 

he/she could have fabricated this log entry to misdirect investigators or deleted log entries 

that implicated him/her as is discussed in Section 3. The total potential uncertainty in the 

above log entry is a combination of these (and possibly other) uncertainties. However, it 

is not clear how the individual uncertainties interact or how they can be combined to 

estimate the maximum potential uncertainty. Given the number of unknowns in the 

equation, this problem is effectively indeterminate. So, it is necessary to estimate 

uncertainty in a heuristic manner.  

 

To strike a balance between the need for some estimate of certainty in digital evidence on 

networked systems versus the cost and complexity of calculating uncertainty, the 

following chart is provided, from lowest level of certainty (C0) to highest level of 

certainty (C6).6 

Certainty 
Level 

Description/Indicators Commensurate 
Qualification 

Examples 

C0 Evidence contradicts known facts. Erroneous/Incorrect Examiners found a vulnerability in Internet 
Explorer (IE) that allowed scripts on a 
particular Web site to create questionable 
files, desktop shortcuts, and IE favorites. 
The suspect did not purposefully create 
these items on the system. 

C1 Evidence is highly questionable. Highly Uncertain Missing entries from log files or signs of 
tampering. 

C2 Only one source of evidence that 
is not protected against tampering. 

Somewhat Uncertain E-mail headers, sulog entries, and syslog 
with no other supporting evidence. 

C3 The source(s) of evidence are 
more difficult to tamper with but 
there is not enough evidence to 
support a firm conclusion or there 

Possible An intrusion came from Czechoslovakia 
suggesting that the intruder might be from 
that area. However, a later connection 
came from Korea suggesting that the 

                                                 
5 A 200 return code would tell us that the command was executed but a 502 return code indicates that the 
server became overloaded and may or may not have executed the command. 
6 Similar types of scales have been found extremely useful in meteorology such as the Beaufort Wind Scale 
and the Fujita Tornado Scale, which was introduced by F. T. Fujita in 1971 and has been universally 
adopted in rating the intensity of tornados by examining the damage they have done (The Fujita Scale, 
1999). 



International Journal of Digital Evidence  Summer 2002, Volume 1, Issue 2 

are unexplained inconsistencies in 
the available evidence. 

intruder might be elsewhere or that there is 
more than one intruder. 

C4 Evidence is protected against 
tampering or multiple, independent 
sources of evidence agree but 
evidence is not protected against 
tampering. 

Probable Web server defacement probably originated 
from a given apartment since tcpwrapper 
logs show FTP connections from the 
apartment at the time of the defacement 
and Web server access logs show the page 
being accessed from the apartment shortly 
after the defacement. 

C5 Agreement of evidence from 
multiple, independent sources that 
are protected against tampering. 
However small uncertainties exist 
(e.g., temporal error, data loss). 

Almost Certain IP address, user account, and ANI 
information lead to suspect’s home. 
Monitoring Internet traffic indicates that 
criminal activity is coming from the house. 

C6 The evidence is tamper proof and 
unquestionable. 

Certain Although this is inconceivable at the 
moment, such sources of digital evidence 
may exist in the future. 

 

Table 1: A proposed scale for categorizing levels of certainty in digital evidence 

 

In the 1995 homicide mentioned in Subsection 2.1, the certainty level of the last 

configuration time of a Shiva Fastpath was greater than C0 (absence of evidence is not 

evidence of absence) and was greater than C1 because there was no evidence of 

tampering. However, since the date/time stamp was easily falsified, it had a relatively low 

certainty level (C2). E-mail headers that do not appear to be forged also have a C2 

certainty level but can drop to C1 certainty level if any inconsistencies or signs of forgery 

are detected. If there is an indication that an offender is using a proxy or some other 

method of concealing his/her location, there is virtually no certainty in associated IP 

addresses recorded in log files (C1). 

 

When multiple sources of evidence are available, the certainty level in the data is 

bolstered because details can be corroborated (C4).7 However, if there are inconsistencies 

between the various sources the certainty level is reduced (C3) and signs of tampering in 

                                                 
7 Investigators should seek the sources, conduits, and targets of an offense. Each of these three areas can 
have multiple sources of digital evidence and can be used to establish the continuity of offense (COO). 
Notably, additional systems may be peripherally involved in an offense and may have related evidence. The 
more corroborating evidence that investigators can obtain, the more certainty they can have in their 
conclusions. 
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the available sources of evidence reduce the certainty level even further (C1). When there 

is complete agreement between protected sources of digital evidence, there is a relatively 

high certainty level (C5) in the evidence but some uncertainty still exists. Currently, there 

are no tamper proof sources of digital evidence (C6) but future developments may 

provide this level of certainty. 

 

The certainty levels in Table 1 apply to data, not to conclusions based on digital evidence 

since erroneous conclusions can be drawn from reliable data. Also, the certainty level in 

digital evidence depends on its context, which includes offender actions and can only be 

assessed after a crime has been committed. An entry in a single log file that is susceptible 

to tampering has a low certainty level (C2) unless there are other independent sources of 

corroborating evidence (C4). A standard syslog entry has a lower certainty level (C2) 

than a cryptographically signed entry (C4) unless there is some indication that the signed 

logs have been compromised, in which case the certainty level drops to C1. 

 

In addition to providing forensic examiners with a practical method for estimating 

uncertainty, this heuristics approach allows investigators, attorneys, judges, and jurors 

who do not have a deep technical understanding of network technology to assess the 

reliability of a given piece of digital evidence. 

3. Log Tampering, Corruption and Loss 

Errors and losses can be introduced into log files at various stages:  

• At the time of the event: a fake IP address can be inserted into a packet or a log 

entry can be fabricated to misdirect investigators 
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• During observation: Spanning ports on a switch to monitor network traffic 

increases the load on the switch and may introduce loading error, increasing the 

number of dropped datagrams. 

• At the time of the log creation: remote logging facilities such as syslog can have 

some percentage of lost messages and a clock offset on the logging system can 

result in incorrect date/time stamps. 

• After creation: log files can become corrupted or can be altered to mislead 

investigators 

• During examination: the application used to represent log files can introduce 

errors by incorrectly interpreting data or by failing to display certain details 

• During analysis: mistakes by an examiner can result in incorrect conclusions 

When dealing with networked systems, it is crucial to extend one’s thinking beyond the 

single computer and consider other connected systems. We will concentrate on simple 

scenarios since they are more likely than sophisticated attacks. However, one should keep 

in mind that DNS records can be modified to make an attacker’s computer appear to be a 

trusted computer, logging programs such as tcpwrappers can be maliciously altered 

(CERT, 1999), and many other components of a network can be tampered with to create 

error and loss. 

3.1 Log Tampering 

On Unix, system messages are sent to syslogd through the /dev/log socket and are written 

to a file on disk or sent to a remote logging host. Since /dev/log usually allows anyone on 

the system to write to it and syslogd is often configured to accept messages over the 

network from any system, it is relatively easy to fabricate a syslog entry. Additionally, 
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syslogd does not add a date/time stamp to locally generated messages that already have a 

time stamp. So, even if a user does not have write access to the syslog file, he/she can 

fabricate an entry with any date/time stamp and pass it through /dev/log using a simple 

program as shown here: 

 
$ ls -latc /var/log/messages 
-rw-------    1 root     root       756174 May  6 17:34 /var/log/messages 
$ ls -latc /dev/log 
srw-rw-rw-    1 root     root            0 Apr 22 14:18 /dev/log 
$ ./make-syslog "Apr 13 04:55:05 lpd[1534]: unexpected error from 192.168.35.65" 
$ su 
Password: 
# tail -f /var/log/messages 
May  6 17:35:00 server1 CROND[21478]: (root) CMD (/usr/local/security/regular-job.pl) 
Apr 13 04:55:05 server1 lpd[1534]: unexpected error from 192.168.35.65   
May  6 17:36:00 server1 CROND[21482]: (root) CMD (/usr/local/security/regular-jop.pl) 

 

The only component of a syslog message that cannot be fabricated in this way is the 

hostname (server1 in this instance) making standard syslog a relatively unreliable source 

of evidence (C2). 

 

Although Unix utmp and wtmp files (C3) are harder to tamper with because root access 

is required, they provide another example of log file tampering. Logon sessions to Unix 

systems are recorded in the wtmp and utmp files which are maintained by login and init. 

The wtmp file retains an historical record of logon sessions whereas the utmp file shows 

who is currently logged into the system. As noted in the manual page for utmp: 

 
The utmp file allows one to discover information about who is 
currently using the system. There may be more users currently 
using the system, because not all programs use utmp logging.  
 
Warning: utmp must not be writable, because many system programs 
(foolishly) depend on its integrity. You risk faked system 
logfiles and modifications of system files if you leave utmp 
writable to any user. 
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The same warnings apply to the wtmp log since not all legitimate programs utilize the 

login process and most intruder backdoors purposefully avoid making log entries. 

Additionally, it is common for intruders who gain unauthorized root access to computer 

systems to remove entries from the wtmp log using programs such as wzap to conceal 

their activities. Although Windows NT logon entries are difficult to fabricate (C3), very 

little logging is enabled by default and, when they are enabled, the logs can be deleted 

using programs such as WinZapper.8 Application logs such as Web server access logs are 

even easier to alter, making them even less reliable (C2).9 

3.2 Log Corruption 

When users logout of a Unix system, init usually clears most of the associated utmp entry 

and records the logout in the wtmp file. However, the logout process sometimes fails to 

update these files, leaving remnants of previous sessions that can introduce errors in a 

number of ways. The most common error is a wtmp entry that shows the user account as 

still logged in long after the user disconnected from the system.10  

 

In one harassment case, wtmp logs (C3) suggested that the primary suspect had been 

                                                 
8 http://ntsecurity.nu/toolbox/winzapper/ 
9 The certainty level in these logs depends on their context. Although Microsoft Internet Information Server 
(IIS) makes it difficult to alter and delete its active logs, IIS generally creates a new log each day leaving 
the previous log vulnerable to tampering or destruction. Intruders will return to a Web server shortly after 
IIS creates a new log file to overwrite incriminating evidence from the inactive log. Interestingly, the 
Windows swap file can contain an abundance of information about recent Web server queries, providing 
forensic examiners with information to corroborate the existing Event Logs and IIS access logs or 
reconstruct events when access logs have been overwritten, increasing the certainty in the log entries to C4 
or C5. 
10 A similar problem can occur in TACACS logs when an individual connects to the Internet through a dial-
up terminal server. The logout may not be recorded, giving the impression that a particular individual is 
still connected to the Internet after the session has been terminated. 
11 The system clock was four minutes fast – a fact that would have made it more difficult to locate the 
implicating pacct records if it had been overlooked. Also, pacct log entries are listed in order of the time 
that a process ended rather than when it began. If this feature is not accounted for, the order of events will 
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logged into a system at the time of one act. A closer examination of the log entry showed 

that a logout entry had never been entered for his session, giving the impression that the 

suspect had been logged in for 5 days, 16 hours, and 44 minutes. 

 
serverZ% last 
userA   pts/14  roosevelt.corpX.  Sun Dec 9 13:10 - 13:17  (00:07) 
userB   pts/2    pc01.sales.corpX Sun Dec 9 13:09 - 13:29  (00:10) 
userC   pts/13  lincoln.corpX.co   Sun Dec 9 13:01 - 16:16  (03:15) 
userH   pts/3    homepc.isp.com   Fri Dec 7 14:14 - 10:53 (6+20:38) 
suspect pts/7    201.4.136.24        Fri Dec 7 08:39 - 01:23 (5+16:44) 

 

An examination of the process accounting logs (C3) for the time in question showed that 

no processes had been running under the suspect’s account and that only one of the other 

logon sessions had been active, implicating another individual.11 

 

A less common, secondary logging error occurs when someone logs into a Unix terminal 

that has an associated utmp entry that was not properly cleared and then uses the su 

(substitute user) command. Instead of making an entry in the sulog (C2) showing the 

current user su-ing, su erroneously obtains the user name of the previous user from the 

utmp file and makes an entry in the sulog showing the previous user su-ing. This anomaly 

can give the impression that someone escalated their privileges on a system without 

authorization when in fact an authorized individual escalated privileges and the logs 

mislabeled the act. Both of these examples show how corrupt log files can implicate an 

innocent individual if potential errors are not accounted for.  

                                                                                                                                                 
be illogical, and important events may be overlooked because the corresponding log entries appear after the 
time period of interest. 
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3.3 Data Loss 

In addition to the log tampering and corruption, uncertainty can be introduced by lost log 

entries. Because syslog and other logging mechanisms like NetFlow (detailed in 

Subsection 4.2) use UDP by default when sending messages to remote systems, there is 

no guarantee of delivery. When a remote logging host is heavily loaded it may drop some 

syslog messages sent from remote hosts, thus leaving gaps in the logs. Alternatives to the 

standard syslog use TCP and sequence numbers to increase reliability and facilitate loss 

calculations. Also, some alternatives use digital signatures to check the integrity of log 

files (C4), making it more difficult to modify logs without detection (Tan, J., 2001). 

 

Losses can also occur in system kernels and at the hardware level, missing important 

details. Figure 3 illustrates some losses that can occur on a networked system used to 

monitor network communications. 
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Figure 3: Potential data losses as pulses in network cables are translated into human 

readable form 

 
Network interface cards and network devices such as switches, routers, and firewalls can 

drop packets. Also, programs used to monitor network traffic can become overloaded and 

fail to retain all packets captured by the kernel as described in Subsection 4.1. Although 

TCP is designed to retransmit dropped packets, network sniffers are not active 

participants in the communication channel and will not cause packets to be resent. 

Furthermore, network-monitoring applications may show only certain types of data (e.g., 

only Internet Protocol data) and may introduce error or discard information by design or 

unintentionally during operation. 

4. Quantifying and Reducing Losses12 

Because of the transient nature of evidence on a network, there is usually only one 

opportunity to capture it, and it can be difficult to determine what information was not 

collected. Although it may not be possible to infer the content of lost datagrams, it is 

useful to quantify the percentage loss. Quantifying the amount of loss gives a sense of the 

completeness of the logs and the resulting crime reconstruction. High losses during the 

monitoring and collection phase translate to low level of certainty in the crime 

reconstruction phase. Furthermore, quantification can help identify and minimize the 

cause of data loss as demonstrated in Subsection 4.2. 

                                                 
12 The Snort and NetFlow data in this section were collected at Yale University, Information Security 
Office. 
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4.1 Sniffer Losses 

Resource limitations in a system can cause losses while capturing network traffic using a 

sniffer. For instance, network-monitoring programs like tcpdump13, Snort14, and 

NetWitness15 read network traffic that is buffered in memory by libpcap16. If the program 

cannot read the data quickly enough, libpcap records this fact before discarding unread 

packets to make space for new ones. The number of packets that were not read by the 

packet capture program are reported by libpcap when the collection process is terminated 

as shown here:17 

 
# tcpdump -X host 192.168.12.5 

tcpdump: listening on xl0 

.....[data displayed on screen]… 

^C 

29451 packets received by filter 

4227 packets dropped by kernel 
 

In this instance, the high number of dropped packets was reduced by writing the data to a 

file instead of displaying it on the screen as shown here: 

 
# tcpdump -w tcpdump-042002 host 192.168.12.5 

tcpdump: listening on xl0 

^C 

84446 packets received by filter 

0 packets dropped by kernel 
 

Like tcpdump, Snort displays the number of dropped packets reported by libpcap after the 

process is terminated. 

                                                 
13 www.tcpdump.org 
14 www.snort.org 
15 www.forensicsexplorers.com 
16 www.tcpdump.org 
17 Unmodified Linux kernels do not provide information about dropped packets, in which case tcpdump 
will only show the number of received packets making it more difficult to quantify the loss. 
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Snort analyzed 936893902 out of 1062045648 packets, dropping 125151746 (11.784%) packets 

 

The percentage of packets dropped by one Snort system18 over a 74-day period on a 

network that peaks regularly at 60 Mbits/second is shown in Figure 4. This chart 

indicates that the number of packets missed by Snort increases with total traffic.19 The 

high percentage losses at low traffic levels may be due to higher than normal loads on the 

collection system.  
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Figure 4: High losses in Snort correspond to higher total number of packets 

captured by libpcap 

 

                                                 
18 A standard desktop computer with a Pentium processor, 100Mbit network interface card and 256MB 
RAM, running FreeBSD. 
19 These losses do not include packets dropped by the network interface card as will be discussed later in 
this section. In this instance, the losses in the network interface card are negligible in comparison to the 
losses in the kernel. 
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These results suggests that a more powerful machine is required to run Snort on this 

network. 

4.2 NetFlow Losses 

NetFlow logs contain basic information relating to each flow that passes through a router 

such as source and destination IP addresses, duration of flows, and amount of data 

transferred. Like syslog, NetFlow uses UDP to transfer information from routers to 

remote logging systems. NetFlow datagrams contain sequence numbers to help determine 

when log entries have been lost in transit. For instance, the following output shows no 

losses when the network is lightly loaded at 05:00 but high losses when the network is 

heavily loaded at 18:30. 

 
% flow-header < ft-v05.2002-04-15.0500-0400 
# mode:                 normal 
# capture hostname:     flow 
# exporter IP address:  130.132.1.100 
# capture start:        Mon Apr 15 05:00:00 2002 
# capture end:          Mon Apr 15 05:15:00 2002 
# capture period:       900 seconds 
# compress:             on 
# byte order:           big 
# stream version:       3 
# export version:       5 
# lost flows:           0 
# corrupt packets:      0 
# sequencer resets:     0 
# capture flows:        199830 
 
% flow-header < ft-v05.2002-04-15.183000-0400 
# mode:                 normal 
# capture hostname:     flow 
# exporter IP address:  130.132.1.100 
# capture start:        Mon Apr 15 18:30:00 2002 
# capture end:          Mon Apr 15 18:45:00 2002 
# capture period:       900 seconds 
# compress:             on 
# byte order:           big 
# stream version:       3 
# export version:       5 
# lost flows:           179520 
# corrupt packets:      0 
# sequencer resets:     1 
# capture flows:        206760 
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In an effort to identify the cause of the high losses, the number of lost NetFlow log 

entries was tracked over a four-day period in 15 minute intervals and is plotted in Figure 

5. The peak losses occurred between 14:45 and 16:45 each day, which corresponds with 

times of peak inbound traffic for the network. Zero losses occurred between 04:30 and 

07:00, corresponding with times of low network usage. More notably, the number of 

captured flows never exceeded 219090 flows in any 15 minute interval, indicating that 

some limiting factor was causing the large losses.  

 

The limiting factor turned out to be a rate-limiting device called a Packeteer that was 

unintentionally restricting the NetFlow UDP traffic between the router and collector. The 

rate-limiting was removed and losses over another four-day period are plotted in Figure 

6, showing significant reduction in losses (predominantly zero) and increase in the total 

number of captured flows. This example demonstrates that uncertainty can be introduced 

in unexpected ways on a network. 
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NetFlow: Captured and Lost Flows
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Figure 5: Captured and lost flows between Apr 15 00:00 – Apr 18 20:15, 2002. High 

losses in NetFlow correspond to higher traffic loads between 14:45 and 16:45 each 

day 
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NetFlow: Captured and Lost Flows
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Figure 6: Captured and lost flows between May 9, 21:45 – May 13 17:45, 2002. 

Losses are significantly reduced after limiting factor (Packeteer rule) was removed. 

 

In this situation, the NetFlow collector was running on a Sun Netra system that was not 

physically close to the router. The losses could be further reduced by connecting the 

collector directly to the router using a dedicated interface thus eliminating the physical 

distance and shared bandwidth that can cause UDP datagrams to be dropped. Connecting 

the NetFlow collector directly to the router would have the added benefit of reducing the 

potential for loading error.20 Using a more powerful computer may also reduce the losses 

if the processor or disk access speeds are limiting factors. 

                                                 
20 Exporting NetFlow logs from a router through one of its existing interfaces consumes bandwidth that 
interferes with the transmission of other data passing through the router, thus introducing loading error. 
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4.3 Network Interface Losses 

Some communication devices have Control/Status Registers that record the number of 

dropped datagrams and packets. For instance, Universal Asynchronous 

Receiver/Transmitter (UART) devices such as modems and network interface cards 

(NIC) have registers that are updated each time the device encounters a problem with a 

datagram. One manufacturer provides the following information about interface errors, 

including datagrams lost due to receiver overruns a.k.a. FIFO overruns (NX Networks, 

1997). 

 
• packet too long or failed, frame too long: "The interface received a packet that is larger than the maximum size 

of 1518 bytes for an Ethernet frame." 

• CRC error or failed, FCS (Frame Check Sequence) error: "The interface received a packet with a CRC error." 

• Framing error or failed, alignment error: "The interface received a packet whose length in bits is not a multiple of 

eight." 

• FIFO Overrun: "The Ethernet chipset is unable to store bytes in the local packet buffer as fast as they come off 

the wire." 

• Collision in packet: "Increments when a packet collides as the interface attempts to receive a packet, but the 

local packet buffer is full. This error indicates that the network has more traffic than the interface can handle." 

• Buffer full warnings: "Increments each time the local packet buffer is full." 

• Packet misses: "The interface attempted to receive a packet, but the local packet buffer is full. This error 

indicates that the network has more traffic than the interface can handle." 

 

Many network interface cards also have a register that indicates how many datagrams 

were captured by the device but were not read by the system. Figure 7 depicts these 

losses when tcpdump is used. 
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Figure 7: Potential losses when monitoring/capturing network traffic using tcpdump 

 

In Figure 7, when the Ethernet card’s buffer is full and is unable to capture a datagram 

from the Ethernet cable, an error is generated and stored in a Control/Status Register on 

the card (receiver overruns = datagrams on the wire – datagrams captured by NIC). If 

libpcap does not read packets from the NIC’s buffer quickly enough, each unread packet 

is recorded as a dropped packet by the NIC (dropped packets = packets available on NIC 

– packets read by libpcap; reported by netstat or ifconfig). When an application such as 

tcpdump does not process packets stored by libpcap quickly enough, each unread packet 

is recorded as a dropped packet by libpcap as shown in Subsection 4.1 (dropped packets 

= packets read by libpcap – packets read by tcpdump). 

 

Some system kernels display receiver overruns based on Control/Status Register values 

in Ethernet cards. For example, on Linux systems netstat and ifconfig can be used to 
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display data in network structures including receiver overruns.21 Output of these 

commands on a Linux machine is shown below with receiver overruns in bold (also 

viewable using cat /proc/net/dev). 

 

% netstat -nid 
Kernel Interface table 
Iface  MTU Met    RX-OK   RX-ERR RX-DRP   RX-OVR    TX-OK     TX-ERR TX-DRP TX-OVR Flg 
eth0   1500   0  19877416         0            0            128      7327647           0        0               0        BRU 
% /sbin/ifconfig 
eth0      Link encap:Ethernet  HWaddr 00:B0:D0:F3:CB:B5   
          inet addr:128.36.232.10  Bcast:128.36.232.255  
Mask:255.255.255.0 
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 
          RX packets:19877480 errors:0 dropped:0 overruns:128 frame:0 
          TX packets:7327676 errors:0 dropped:0 overruns:0 carrier:1 
          collisions:442837 txqueuelen:100  
          Interrupt:23 Base address:0xec80  

 

Similar information is available on network devices such as switches, routers and 

firewalls. The following output obtained from a PIX firewall using the show interface 

command gives a significant amount of error information, including overruns.  

 
# show inter 
interface ethernet0 "outside" is up, line protocol is up 
  Hardware is i82557 ethernet, address is 00a0.c5d1.35d3 
  IP address 192.168.12.15, subnet mask 255.255.255.0 
  MTU 1500 bytes, BW 100000 Kbit full duplex 
        1600481967 packets input, 4258033917 bytes, 1172 no buffer 
        Received 969256 broadcasts, 0 runts, 0 giants 
        3 input errors, 3 CRC, 0 frame, 0 overrun, 3 ignored, 0 abort 
        1974900124 packets output, 1524603379 bytes, 12 underruns 
        0 output errors, 0 collisions, 0 interface resets 
        0 babbles, 0 late collisions, 0 deferred 
        0 lost carrier, 0 no carrier 
        input queue (curr/max blocks): hardware (128/128) software (0/129) 
        output queue (curr/max blocks): hardware (0/128) software (0/167) 

 

Although it may not be feasible to prevent such errors, it is important to document them 

when collecting evidence. For instance, when network traffic is being monitored through 

a spanned port on a switch, the interface on some switches can be polled for errors when 

                                                 
21 FreeBSD, Solaris, and other versions of Unix do not report receiver overruns in the netstat or ifconfig 
output but this and other information about network interfaces can be obtained using SNMP. For instance, 
information about interfaces on FreeBSD can be obtained using snmpwalk and snmpnetstat in net-snmp 
distribution (e.g., snmpwalk localhost public interfaces.ifTable.ifEntry) 



International Journal of Digital Evidence  Summer 2002, Volume 1, Issue 2 

the capture is complete. Additionally, errors on the collection system’s network interface 

card can be similarly documented. Presumably these losses will be negligible unless the 

system is malfunctioning but documenting the errors or lack thereof will help establish 

this fact. 

5. Errors in Reconstruction and Interpretation 

Given the complexity of networked systems, large amounts of data, and occurrence of 

evidence dynamics22 there is a high potential for mistakes and misinterpretations in the 

analysis phase of an investigation. Tools exist to help us process and examine the vast 

amounts of data common in network investigations but these tools add another layer of 

abstraction and are useful only when sufficient data are obtained and the meaning of the 

data are understood. Windows Event Log analysis provides a useful example of how 

analysis tools can introduce errors. To facilitate analysis of Windows NT Event Logs, 

many examiners dump the log entries into a text file using dumpel or dempevt. Although 

dempevt presents more information than dumpel, it can incorrectly interpret date/time 

stamps after one hour is inserted for daylight savings time. The output from dempevt fails 

to correct for the time change and represents times prior to daylight savings one hour off 

(Casey, 2001). 

 

Uncertainty in origin can also lead to interpretation error, as was demonstrated when a 

pharmaceutical company in the United Kingdom relied on a forged “From” e-mail header 

(C1) to accuse a researcher in the United States of purposefully sending a virus to several 

                                                 
22 Evidence dynamic is any influence that changes, relocates, obscures, or obliterates evidence, regardless 
of intent, between the time evidence is transferred and the time the case is adjudicated (Chisum, Turvey 
2000), (Casey 2001) 
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e-mail accounts that had been targeted by extreme animal rights groups in the past. By 

examining the “Received” headers (C2) of the offending e-mail messages, investigators 

located the computer that was used to send the messages. The computer was a public 

workstation that the accused researcher did not remember using. Investigators found that 

the computer was infected with the Sircam worm – the worm had evidently obtained the 

pharmaceutical company’s e-mail addresses from a Web page in the browser cache and 

forged a message to these accounts, making it appear to come from the researcher’s e-

mail address. The Sircam worm was spreading itself to others in a similar manner, 

weakening the already feeble theory that the research purposefully targeted the 

pharmaceutical company. 

 

A more subtle example of interpretation error arose in a case of an employee suspected of 

downloading several pornographic files to disk, creating shortcuts on the desktop to 

several pornographic sites, and adding several Favorite items to the Internet Explorer 

Web browser. The employee denied all knowledge of these items. An analysis of the 

Web sites that were viewed by the employee at the time in question helped examiners 

determine that one site exploited a vulnerability in Internet Explorer (Microsoft, 1999) 

and created the offending items on the computer. Although the suspect’s online behavior 

did not cross the criminal threshold, it was sufficiently reprehensible to justify his 

termination. 

 

There are many potential interpretation errors that can occur when tracing a logged event 

back to its source. Locating a computer intruder, for instance, often begins with an IP 
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address in a log file. However, relying on information from only one source can result in 

the wrong IP address. 

 

In one Web defacement case, a system administrator asserted that a specific individual 

was responsible because he was the only person logged into the Web server at the time of 

the defacement. However, this conclusion was based on one log file – the wtmp log (C3) 

on a Unix machine that shows when user accounts logged on and off. A thorough 

examination of other log files on the system showed the following:  

  

1) The tcpwrappers log showed an FTP connection from a PC to the Web server 

shortly before the page was defaced 

2) The Web server access log showed the defaced page being viewed from several 

PCs shortly after the defacement  

 

These supporting log entries (C4) were used to locate the general source of the attack – a 

shared apartment – and personal interviews of the reduced suspect pool led to the vandal. 

The original suspect was not involved and, even if the initial suspect's account had been 

used to deface the Web page, this does not necessarily imply that the account owner was 

responsible. A wtmp entry does not necessarily indicate that the user logged in at a given 

time since it is possible that someone else used the individual’s account. 

 

Once there is a high degree of certainty that a given IP address is the actual origin of the 

attack, the responsible ISP is contacted for subscriber information. In one intrusion case, 
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an ISP became very concerned when an intrusion appeared to originate from one of their 

employees. It transpired that the IP address had been transcribed incorrectly in the 

subpoena. The intrusion was actually committed using a Californian subscriber’s account. 

However, the subscriber’s password had been stolen and used by the intruder without her 

knowledge, making it more difficult to identify the offender. Fortunately, the ISP used 

Automatic Number Identification (ANI), allowing the investigators to determine the 

originating phone number in Texas for each connection to the compromised systems. 

Although the phone number led to the intruder in this case, ANI information is not 

always conclusive since someone could have broken into the individual’s home computer 

and used it as a launching pad for attacks. 

 

Even when an examiner understands the meaning of a given log entry, interpretation 

errors can result when the possibility of a wily offender is ignored. It is not uncommon 

for computer intruders to fabricate log entries to give a false origin of attack. Therefore, 

forensic examiners should always entertain the possibility that a sophisticated attacker in 

one location has staged a crime scene to make it appear to be an unsophisticated intruder 

in a different location. 

 

Mistakes in interpretation and analysis can be reduced by rigorous application of the 

scientific method – performing exhaustive investigation and research, questioning all 

assumptions, and developing a theory that explains the facts. Even if a forensic examiner 

has a high degree of confidence in his/her assumptions, potential errors and alternate 

explanations should be explored and eliminated or at least documented as unlikely. If a 
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forensic examiner has complete confidence in his/her conclusions, this is usually an 

indication that he/she is missing something – there is always uncertainty and all 

assertions should be qualified accordingly as discussed in Subsection 2.3. 

6. Case Example23 

On 04/23/02, an organization found that a server containing sensitive information had 

been compromised. Although there were no unusual logon entries in the wtmp log (C3), 

the contents of the root account’s command history file (/.sh_history) gave a sense of 

what the intruder was doing on a system. 

# cat /.sh_history 
mkdir nisplus 
cd nisplus 
mkdir /dev/pts/01 
w 
cp /lib/boot/uconf.inv /dev/pts/01 
wget ftp://ftp.uu.net/tmp/genocide-AIX-000DC06D4C00-20020419.tar.gz 
gzip -dc *|tar -xvf - 
./setup 
telnet 192.168.34.30 4580 
TERM=xterm  
export TERM 
rm -rf /tmp/.new 
telnet 192.168.34.30 4580 

 

Although the filename appears to contain a date 20020419, all of the information in the 

command history file has a high temporal uncertainty (C2) because it does not have 

date/time stamps associated with each entry. Also, although this log contains the host 

ftp.uu.net, it is unlikely that this is the origin of the initial intrusion. 

 

The ctime of the /dev/pts/01 directory shown in the .sh_history file suggests April 23 as a 

date, but this is not necessarily the time that the directory was created as on a Windows 

                                                 
23 Some hostnames and IP addresses in this example have been modified to protect the innocent 
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system.24 Misinterpreting the inode ctime as the creation time can lead to errors in 

analysis. 

 
# ls -latc /dev/pts/ 
total 24 
crw--w--w-   1 user    staff         27,  1 Apr 23 15:40 1 
crw--w--w-   1 root     system    27,  4 Apr 23 15:40 4 
crw--w--w-   1 user    staff         27,  0 Apr 23 15:35 0 
crw--w--w-   1 user    staff         27,  3 Apr 23 15:34 3 
crw--w--w-   1 user    staff         27,  2 Apr 23 15:31 2 
drwxr-xr-x    2 root     system    512    Apr 23 15:22 01 

 

The ctime of the /dev/pts/01/uconf.inv file shown in the .sh_history suggests that the 

intruder copied this rootkit configuration file on April 21 at 22:25. 

 
# ls -latc /dev/pts/01 | head -5 
total 48 
drwxr-xr-x   2 root     system       512 Apr 23 15:22 . 
-rwxr-xr-x   1 root     system      4675 Apr 23 15:22 a.out 
-rw-r--r--     1 root     system        85 Apr 23 15:22 foo.c 
-rw-r--r--     1 root     system       437 Apr 21 22:25 uc nf.inv o
drwxr-xr-x   3 root     system      3584 Apr 21 22:23 .. 

 

A search for other files created on April 21 supports the hypothesis that the entries in the 

.sh_history file were from April 21 between 22:25 and 22:36 (genocide-AIX-

000DC06D4C00-20020419.tar.gz). 

 
# ls -latc /usr/lib/security/nisplus | head -22 
total 3016 
drwxr-xr-x   3 root     system      1024 Apr 23 14:00 . 
-rw-------   1 root     system     24099 Apr 23 14:00 drone2.dat 
-rw-r--r--   1 root     system        91 Apr 23 14:00 servers 
-rw-r--r--   1 root     system         0 Apr 21 22:36 identd 
-rw-r--r--   1 root     system         6 Apr 21 22:35 pid.drone 
-rw-r--r--   1 root     system      1769 Apr 21 22:35 cront 
-rwxr-xr-x   1 root     system      1472 Apr 21 22:35 droneload 
-rw-r--r--   1 root     system         3 Apr 21 22:35 binname 
-rw-r--r--   1 root     system         6 Apr 21 22:35 nick 
-rw-r--r--   1 root     system         5 Apr 21 22:35 port 
-rw-r--r--   1 root     system         5 Apr 21 22:35 user 
-rw-r--r--   1 root     system        15 Apr 21 22:35 vhost 
-rw-r--r--   1 root     system        14 Apr 21 22:35 realname 
-rw-r--r--   1 root     system         6 Apr 21 22:34 ircnick 
-rwxr-xr-x   1 root     system    769266 Apr 21 22:29 sh 
-rw-r--r--   1 root     system       805 Apr 21 22:27 drone.dat 
-rwxr-xr-x   1 root     system       449 Apr 21 22:27 geno.ans 
-rwxr-xr-x   1 root     system       455 Apr 21 22:27 loader 

                                                 
24 In this instance, the ctime was probably updated when files were added to the directory. 
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-rwxr-xr-x   1 root     system       449 Apr 21 22:27 motd 
-rwxr-xr-x   1 root     system      5093 Apr 21 22:27 nickpool 
-rwxr-xr-x   1 root     system    218323 Apr 21 22:27 wget 
-rw-r--r--   1 root     system    417075 Apr 21 22:27  genocide-AIX-000DC06D4C00-20020419.tar.gz 

 

6.2 Syslog 

Searching the syslog file for activity on April 21 suggests that intruder broke in on April 

21 at 00:06. 

 
Apr 21 00:06:03 target rcp[35640]: IMPORT file from host ns1.corpX.com cmd is rcp -f /var/adm/aixkit.tar, local 

user adm. 

 

However, surrounding log entries were stamped April 20 20:06, indicating that the time 

stamp on this message is incorrect (bias error = 5 hours) and that the log entry might be 

fabricated (C1). 

 

A search for files created on April 20 suggests that the initial intrusion occurred on April 

20 at 20:06. 

 
# ls -latc /usr/lib/boot | head -12 
total 17152 
-rw-------   1 root     system       512 Apr 23 14:06 ssh_random_seed 
drwxr-xr-x   5 bin      bin         1024 Apr 20 20:06 . 
-rw-r--r--   1 root     system         6 Apr 20 20:06 sshd.pid 
-rwxr-xr-x   1 root     system      3119 Apr 20 20:06 inv 
-r-xr-xr-x   1 root     system    213679 Apr 20 20:06 netstat 
-r-xr-xr-x   1 root     system     64506 Apr 20 20:06 psr 
-rw-r--r--   1 root     system       437 Apr 20 20:06 uconf.inv 
-rw-r--r--   1 root     system        10 Apr 20 20:06 iver 
-rw-r--r--   1 root     system       880 Apr 20 20:06 ssh_config 
-rw-------   1 root     system       530 Apr 20 20:06 ssh_host_key 
-rw-r--r--   1 root     system       334 Apr 20 20:06 ssh_host_ke .pub y
-rw-r--r--   1 root     system       408 Apr 20 20:06 sshd_config 

 

6.3 NetFlow 

An analysis of NetFlow logs for the time period gives a more complete understanding of 

the sequence of events.  
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• On 04/20 between 18:55 and 19:11, there was an automated scan from 

alcor.hknet.cz of the entire network for vulnerable FTP servers. 

• On 04/20 between 20:11:39 and 20:12:13, an individual using alcor.hknet.cz 

gained unauthorized access to the target system via a vulnerability in the FTP 

server. The intruder downloaded data to the compromised system from 

ns1.corpX.com apparently using rcp (port 514) as suggested in the questioned 

syslog entry: 

 
Start               End                SrcIPaddress    SrcP  DstIPaddress     DstP    P  Fl Pkts       Octets 
0420.20:11:39.737  0420.20:11:42.861   192.168.34.30  21      195.113.115.170  4113    6   6  2           84         
0420.20:11:39.873  0420.20:11:41.33     192.168.34.30  21      195.113.115.170  4113    6   1  11         2776       
0420.20:11:43.890  0420.20:11:43.890   192.168.34.30  21      195.113.115.170  4123    6   2  1           44         
0420.20:11:44.22   0420.20:11:49.186  192.168.34.30  21      195.113.115.170  4123    6   0  10         2762 
0420.20:11:51.110  0420.20:11:51.110  192.168.34.30  0         17.16.103.2    2048    1   0  1           1500 
0420.20:11:51.110  0420.20:12:13.210  192.168.34.30  1023  17.16.103.2    514       6   3  283      11364 

 

• On 04/21 between 22:27 and 22:30 an intruder accessed a hacked SSH server on 

port 38290 of the compromised system from Seoul National Polytechnic 

University (203.246.80.143).  

• On 04/21 between 22:33:04 and 22:33:09, the intruder downloaded and installed 

an IRC bot from ftp.uu.net (192.48.96.9) as recorded in the .sh_history file and 

installed the bot a few minutes later. The intruder returned several times through 

the hacked SSH server on port 38290: 

 
Start   End                SrcIPaddress   SrcP     DstIPaddress     DstP    P Fl Pkts      Octets 
0421.22:27:48.2 0421.22:27:48.2    192.168.34.30  0          203.246.80.143  2048    1   0  1          1500 
0421.22:27:48.2    0421.22:27:48.2    192.168.34.30  38290  203.246.80.143  1022    6   2  1          44 
0421.22:28:28.294  0421.22:28:36.118  192.168.34.30  38290  203.246.80.143  1022    6   0  13         1272 
0421.22:30:56.229  0421.22:31:24.781  192.168.34.30  38290  203.246.80.143  1022    6   0  32         2032 
0421.22:33:04.694  0421.22:33:09.170  192.168.34.30  35334  192.48.96.9      21       6   7  19         901 
0421.22:33:04.694  0421.22:33:04.694  192.168.34.30  0          192.48.96.9      2048   1   0  1          1500 
0421.22:34:17.123  0421.22:34:18.443  192.168.34.30  38290  203.246.80.143  1022    6   0  7          908 
0421.22:37:38.798  0421.22:37:38.798  192.168.34.30  0          203.246.80.143  2048    1   0  1          1500 
0421.22:45:59.949  0421.22:46:00.205  192.168.34.30  38290  203.246.80.143  1022    6   1  4          200 
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In summary, log files and file system information on the compromised host gave a sense 

of when the attack occurred but have low levels of certainty (C1 – C3). The reliability of 

the data is questionable because the clock on the compromised system was approximately 

5 minutes slow giving all timestamps a bias error of -5 minutes. Also, the intruder gained 

root access and had the ability to change any information on the system and one relevant 

syslog entry had a bias error of +5 hours. Additionally, the origin of the attack was not 

evident from information on the host. In fact, information on the host could have led 

investigators to incorrectly assume that ftp.uu.net or ns1.corpX.com. 

 

NetFlow logs give a more complete overview of events but a significant amount of data 

was not being collected at the time of the intrusion due to the losses shown in Figure 5. 

Therefore, although the NetFlow logs have more accurate date/time stamps, the 

information associated with each NetFlow entry has some degree of uncertainty due to 

the high losses (C4). Also, the NetFlow logs indicate that the attack was launched from 

alcor.hknet.cz but did not indicate where the intruder was physically located. It is likely 

that the intruder was not proximate to the computer used to launch the attack, further 

supported by the later connections from Korea. Of course, there could be multiple 

attackers in different countries – the point is that there is a degree of uncertainty 

regarding the intruder’s physical location and other aspects of the intrusion that would 

need to be addressed through further investigation. 
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Notably, if the system clocks on both the router and compromised host had not been 

documented, the bias error could be inferred from the data, and the discrepancy could be 

documented by stating that all timestamps have an uncertainty of +/- 5 minutes (within 

some level of confidence). This would not significantly alter the conclusions in the report 

regarding the origin and time of the intrusion but would help readers understand 

discrepancies and generate subpoenas for the attacking system. For instance, if the 

subpoena asked for subscriber information and only provided a specific time (Apr 20 

20:06 EST) rather than a range of time (Apr 20 20:01 - 20:17), the incorrect subscriber 

information might be given. 

7. Summary and Conclusions  

Each layer of abstraction on a network provides a new opportunity for error. The origin 

and time of events can be uncertain, errors can occur in logging applications, system 

limitations can exacerbate data loss, individuals can conceal or fabricate evidence, and 

mistakes can occur in data presentation and analysis. At the same time, networks provide 

many opportunities from a forensic standpoint. One of the advantages of networks as a 

source of evidence is that a single event leaves traces on multiple systems. Therefore, it is 

possible to compare traces from different systems for consistency and it is difficult for 

criminals to destroy or alter all digital traces of their network activities.  

 

To reduce the incidence of incorrect conclusions based on unreliable or inaccurate data it 

is necessary to quantify uncertainty and correct for it whenever possible. In addition to 

using corroborating data from multiple, independent sources, forensic examiners should 

attempt to rate their level of confidence in the relevant digital evidence. A practical 
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approach to categorizing uncertainty in digital data was proposed in Subsection 2.3, and 

numerous examples were given. Using this type of systematic method to qualify 

conclusions helps decision makers assess the reliability of the information they are being 

given and anticipates the challenges that will be raised in courts as attorneys become 

more familiar with digital evidence. Describing measures taken to document and 

minimize loss of data can further raise the confidence in evidence collected from a 

network. 

 

Even when uncertainty is addressed, completely reliable sources of digital evidence do 

not exist and digital data is circumstantial at best, making it difficult to implicate an 

individual directly with digital data alone. Therefore, it is generally necessary to seek 

firmer proof such as confessions, video surveillance, or physical evidence to overcome 

the inherent uncertainty of digital evidence.25 The amount of supporting evidence that is 

required depends on the reliability of the available digital evidence. 

 

Ultimately, abiding by the scientific method will help forensic examiners to avoid 

egregious errors. Carefully exploring potential sources of error, hypothesis testing, and 

qualifying conclusions with appropriate uncertainty will protect forensic examiners from 

overstating or misinterpreting the facts. 
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