
Chapter 1

Logic and Set Theory

1.1 Propositions

A proposition is a sentence that has a truth value: true (T) or false (F).
It cannot be both true and false simultaneously. Some propositions have
easily-determined truth values, such as “π < 3” and “It is 5:24pm”. Other
propositions may have truth values that we will never know, such as
“Euler had eggs for breakfast on his 10th birthday”.

Of course, not all sentences are propositions. For example,
“x2 + 1 = 0” could be true or false depending on which value is assigned to
the variable x. Can you come up with a sentence that is neither true nor
false?

There are a few very common ways to construct new propositions
from given propositions P and Q.

• The negation of P (denoted by ∼ P ) is the proposition “not P”.
• The conjunction of P and Q (denoted P ∧Q) is the proposition “P

and Q”.
• The disjunction of P and Q (denoted P ∨Q) is the proposition “P

or Q”.

Note that P and ∼ P always have opposite truth values, P ∧Q is true
precisely when both P and Q are true, and P ∨Q is true precisely when at
least one of P or Q is true. As an example, let A be the proposition “π is a
rational number” and let B be the proposition “Lansing is the capital of
Michigan”. Then A ∧B is false, but A ∨B is true. Can you determine the
truth value of the proposition ∼ A ∨B?

In general, the form of a proposition does not have a truth value until
we have specific propositions to “plug in”. We don’t know, for example,
the truth value of P ∧Q is true until we know the truth values of the
propositions P and Q. This is similar to saying that x2 = 25 does not have
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a truth value until we choose a specific value for x. For this reason, it is
convenient to make charts that give us all possible truth values of a
proposition, based on the truth values of the propositions it is made up of.
We call these tables truth tables. Here are the truth tables for the
negation, conjunction, and disjunction:

P ∼ P
T F
F T

P Q P ∧Q
T T T
T F F
F T F
F F F

P Q P ∨Q
T T T
T F T
F T T
F F F

Let’s now add in a third proposition R, and construct the truth table for
the propositional form (P ∨Q)∧ ∼ R. We start with three columns,
representing every possible combination of truth values for P , Q, and R (of
which there are eight!). We then construct our desired propositional form
column-by-column, providing truth values in each column along the way.

P Q R P ∨Q ∼ R (P ∨Q)∧ ∼ R
T T T T F F
T T F T T T
T F T T F F
T F F T T T
F T T T F F
F T F T T T
F F T F F F
F F F F T F

The reader should construct the truth table for the propositional form
(P ∨Q) ∨ (∼ P∧ ∼ Q) in order to see that this propositional form is true
no matter what the truth values of P and Q are. In other words, the last
column of your truth table should be all “T’s”. Any propositional form
that has this property is called a tautology. On the other hand, and
propositional form that is always false for every assignment of truth values
to its components is called a contradiction. Can you come up with an
example of a propositional form that is a contradiction? (Hint: The
negation of a tautology is always a contradiction).

After the example above with P , Q, and R, one can easily imagine
that propositional forms can become somewhat unwieldy. It is often useful,
when possible, to write a propositional form in a simpler but equivalent
way. We define two propositional forms to be equivalent if and only if
they have the same truth tables. As an easy example, note that P and
∼ (∼ P ) are equivalent propositional forms. (Provide the truth tables to
show this). Another famous example of an equivalence of this sort is given
by DeMorgan’s Laws:
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• ∼ (P ∨Q) is equivalent to ∼ P∧ ∼ Q

• ∼ (P ∧Q) is equivalent to ∼ P∨ ∼ Q

Again, the reader should provide the truth tables to verify these
equivalences.

1.2 (Bi)conditionals

Consider the sentence “If you score 100% on the final exam, then you earn
an A for the course”. This “if-then” sentence is a proposition which has
component propositions “you score 100% on the final exam” and “you earn
an A for the course”. The truth of the given “if-then” proposition depends
on the truth values of the component propositions. The reader should take
a moment to consider all of the cases possible here, of which there are four
(each component can be either true or false). For example, if you score
100% on the final exam and you get an A for the course on your
transcript, it should make intuitive sense that the “if-then” proposition
above is true. That is, when both of the component propositions are true,
then the “if-then” proposition is true. What about the other three cases?
Before we use a truth table to show what happens in these cases, let us
introduce some terminology. For propositions P and Q, the conditional
sentence P ⇒ Q is the proposition “If P , then Q.” The name conditional
refers to the fact that proposition P is giving conditions. The proposition
P is called the antecedent and Q is called the consequent. The truth
values of P ⇒ Q are given in the following truth table.

P Q P ⇒ Q

T T T
T F F
F T T
F F T

Notice that P ⇒ Q is true precisely when P is false or Q is true. In
particular, one can think of the second line of the table above to mean that
a promise was broken. For example, if you score 100% on the final exam
(so the antecedent in the example above is true) but do not earn an A for
the course (so the consequent in the example above is false) then it
appears that what was promised to you did not happen. Otherwise, if you
don’t score 100% on the final exam, then the promise is not broken
regardless of the grade you earn in the course. Furthermore, as mentioned
above, if you do score 100% on the final exam and you earn an A in the
course, then the promise was certainly not broken. It is very interesting to



4 CHAPTER 1. LOGIC AND SET THEORY

note here that the proposition P ⇒ Q is true whenever the antecedent is
false! So, for example, if one begins their “if-then” statement with “If the
moon is made of green cheese” then regardless of the consequent, the
conditional sentence is true. It is also quite interesting to note that the
conditional P ⇒ Q has a truth value regardless of any existing relationship
between P and Q. The proposition “If 2 + 2 = 5, then all humans are over
7 feet tall” is true. Similarly, the proposition “If 2+2=5, then some
humans are over 7 feet tall” is also true.

You may be wondering at this point how we deal with familiar
propositions from mathematics, like the following transitivity statement:

“If 2 < x < y , then 2 < y .”

It seems impossible to assign a truth value to this proposition without
choosing specific values for x and y. It is the case, however, the the
conditional sentence above is true for every possible choice of x and y
(convince yourself of this!) so that we are safe to say that this proposition
is true. In general, it is important to note that when we say P ⇒ Q is
true, we are not claiming that either P or Q is true.

We have special names for particular conditional sentences, based on
a given conditional sentence. The propositions Q⇒ P , ∼ Q⇒∼ P , and
∼ P ⇒∼ Q are called the converse, contrapositive, and inverse of the
proposition P ⇒ Q, respectively. It may be interesting to note that “the
contrapositive is the inverse of the converse”. The reader should take a
moment to give the converse, inverse, and contrapositive of the proposition
“If 2 + 2 = 5, then all humans are over 7 feet tall.”, along with the truth
values of each. In general, a conditional sentence is equivalent to its
contrapositive, as is proved by examining the fifth and sixth columns of
the following truth table, which are identical.

P Q ∼ P ∼ Q P ⇒ Q ∼ Q⇒∼ P
T T F F T T
T F F T F F
F T T F T T
F F T T T T

The reader should easily be able to add two more columns to the table
above, one for the inverse and one for the converse. These columns will
show that, in general, a conditional sentence is neither equivalent to its
inverse nor its converse.

We often need to examine a conditional sentence and its converse at
the same time. That it, we want to examine the propositional form

(P ⇒ Q) ∧ (Q⇒ P )
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To do so, for propositions P and Q, we introduce the biconditional
sentence P ⇔ Q. P ⇔ Q is the proposition “P if and only if Q.”, and is
true precisely when P and Q have the same truth values. (A very common
abbreviation for the phrase “if and only if” is the triplet “iff”, which we will
use throughout the rest of this text.) Here is the corresponding truth table:

P Q P ⇔ Q

T T T
T F F
F T F
F F T

In the exercises at the end of the chapter, we will ask you to prove that
P ⇔ Q is equivalent to (P ⇒ Q) ∧ (Q⇒ P ), along with a number of other
equivalences. For now, we provide a glossary of some possible
interpretations of the symbolic forms of conditionals and biconditionals.

P ⇒ Q may be read as P ⇔ Q may be read as

If P , then Q P if and only if Q
P implies Q P is equivalent to Q

P is sufficient for Q P is necessary and sufficient for Q
Q is necessary for P

P only if Q
Q whenever P

As a final note for this section, we’ll address a sort of “order of
operations” for the connectives that we’ve introduced:

∼,∧,∨,⇒,⇔

are always applied in the order listed. We can regard this as saying that, in
the order listed above, the connectives are applied to the smallest
proposition possible. So, for example,

P ⇔∼ Q ∧R⇒ S is the same as P ⇔ (((∼ Q) ∧R)⇒ S)

1.3 Operations With Sets

Just like we can combine numbers with operations like addition and
multiplication, we can also combine sets in some special ways. Three of
these operations with sets stand out: union, intersection, and
difference. These are binary operations on sets because they take two
sets and combine them into one. Let A and B be sets. Then:
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• The union of A and B is denoted A ∪B and is defined to be the set
of all elements that are in A or B.

• The intersection of A and B is denoted A ∩B and is defined to be
the set of all elements that are in A and B.

• The difference of A and B is denoted A−B and is defined to be
the set of all elements that are in A but not in B.

These operations are pictured above using Venn Diagrams. For example, if
A = {1, 2, 3, 4, 5, 6, 7} and B = {1, 3, 5, 7, 9, 11}, then

• A ∪B = {1, 2, 3, 4, 5, 6, 7, 9, 11}

• A ∩B = {1, 3, 5, 7}

• A−B = {2, 4, 6}

The reader should experiment with these operations when the sets involved
are intervals of real numbers. Notice that it may not be the case that two
sets overlap. For example, the intersection (1, 3] ∩ (4, 5) = ∅. In the event
that the intersection of two sets is the empty set, we say that the sets are
disjoint.

There is one more set operation that we will make frequent use of,
called the Cartesian product, and denoted by ×. For two sets A and B,
we define their cartesian product to be

A×B = {(a, b) : a ∈ A and b ∈ B} .

That is, the set of all ordered pairs with first element from A and second
element from B. The reader should compute A×B for the sets A and B
given above. The reader should also take a moment to visualize and
describe R× R× R, which we will also denote as R3.


